Abstract
BackgroundIn spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts (cis-NATs). The widespread occurrence of cis-NATs suggests an evolutionary advantage for this type of genomic arrangement. Experimental evidence for the regulation of two cis-NAT gene pairs by natural antisense transcripts-generated small interfering RNAs (nat-siRNAs) via the RNA interference (RNAi) pathway has been reported in Arabidopsis. However, the extent of siRNA-mediated regulation of cis-NAT genes is still unclear in any genome.ResultsThe hallmarks of RNAi regulation of NATs are 1) inverse regulation of two genes in a cis-NAT pair by environmental and developmental cues and 2) generation of siRNAs by cis-NAT genes. We examined Arabidopsis transcript profiling data from public microarray databases to identify cis-NAT pairs whose sense and antisense transcripts show opposite expression changes. A subset of the cis-NAT genes displayed negatively correlated expression profiles as well as inverse differential expression changes under at least one of the examined developmental stages or treatment conditions. By searching the Arabidopsis Small RNA Project (ASRP) and Massively Parallel Signature Sequencing (MPSS) small RNA databases as well as our stress-treated small RNA dataset, we found small RNAs that matched at least one gene in 646 pairs out of 1008 (64%) protein-coding cis-NAT pairs, which suggests that siRNAs may regulate the expression of many cis-NAT genes. 209 putative siRNAs have the potential to target more than one gene and half of these small RNAs could target multiple members of a gene family. Furthermore, the majority of the putative siRNAs within the overlapping regions tend to target only one transcript of a given NAT pair, which is consistent with our previous finding on salt- and bacteria-induced nat-siRNAs. In addition, we found that genes encoding plastid- or mitochondrion-targeted proteins are over-represented in the Arabidopsis cis-NATs and that 19% of sense and antisense partner genes of cis-NATs share at least one common Gene Ontology term, which suggests that they encode proteins with possible functional connection.ConclusionThe negatively correlated expression patterns of sense and antisense genes as well as the presence of siRNAs in many of the cis-NATs suggest that siRNA regulation of cis-NATs via the RNAi pathway is an important gene regulatory mechanism for at least a subgroup of cis-NATs in Arabidopsis.
Highlights
In spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts
Identification of Arabidopsis cis-Natural antisense transcripts (NATs) with inverse expression changes in response to various environmental and developmental conditions Co-expression of sense and antisense transcripts within a NAT pair could potentially form doublestranded RNAs (dsRNAs), which could be processed into small RNAs and cause silencing of the antisense transcript
We identified all the cisNATs in the Arabidopsis genome and conducted computational analysis of large-scale microarray expression data from public databases
Summary
In spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts (cis-NATs). Experimental evidence for the regulation of two cis-NAT gene pairs by natural antisense transcripts-generated small interfering RNAs (nat-siRNAs) via the RNA interference (RNAi) pathway has been reported in Arabidopsis. Natural antisense transcripts (NATs) are a class of endogenous coding or non-coding RNAs that have sequence complementarity to other RNAs in the cell. Cis-NATs are transcribed from the opposite strands of the same genomic locus, in which case the sequence complementarity between two transcripts is directly related to the overlap in locations of the corresponding genes on the sense and antisense strands. Cis-NATs usually have a long perfect complementary overlap between the sense and antisense transcripts, whereas the trans-NATs often have short and imperfect complementarity. Despite the widespread of NATs in eukaryotic genomes, the mechanisms of their regulation are still largely unknown
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.