Abstract

We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.