Abstract
AbstractImplicit samplers are algorithms for producing independent, weighted samples from multivariate probability distributions. These are often applied in Bayesian data assimilation algorithms. We use Laplace asymptotic expansions to analyze two implicit samplers in the small noise regime. Our analysis suggests a symmetrization of the algorithms that leads to improved implicit sampling schemes at a relatively small additional cost. Computational experiments confirm the theory and show that symmetrization is effective for small noise sampling problems.© 2016 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.