Abstract

Protein levels can be controlled by regulating protein synthesis or half life. The aim of this paper is to investigate how introducing feedback in burst frequency or protein decay rate affects the stochastic distribution of protein level. Using a tractable hybrid mathematical framework, we show that the two feedback pathways lead to the same mean and noise predictions in the small-noise regime. Away from the small-noise regime, feedback in decay rate outperforms feedback in burst frequency in terms of noise control. The difference is particularly conspicuous in the strong-feedback regime. We also formulate a fine-grained discrete model which reduces to the hybrid model in the large system-size limit. We show how to approximate the discrete protein copy-number distribution and its Fano factor using hybrid theory. We also demonstrate that the hybrid model reduces to an ordinary differential equation in the limit of small noise. Our study thus contains a comparative evaluation of feedback in burst frequency and decay rate, and provides additional results on model reduction and approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.