Abstract
The zinc fingers of the HIV-1 nucleocapsid protein, NCp7, are prime targets for antiretroviral therapeutics. Here we show that S-acyl-2-mercaptobenzamide thioester (SAMT) chemotypes inhibit HIV by modifying the NCp7 region of Gag in infected cells, thereby blocking Gag processing and reducing infectivity. The thiol produced by SAMT reaction with NCp7 is acetylated by cellular enzymes to regenerate active SAMTs via a recycling mechanism unique among small-molecule inhibitors of HIV.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have