Abstract

AbstractRecently, organic nonvolatile memory has attracted much interest as a candidate device for next generation nonvolatile memory because of its simple process, small device area, and high speed. To investigate electrical characteristics of small molecular organic nonvolatile memory with Ni as a middle metal layer, we developed a small molecular organic nonvolatile memory with the device structure of Aluminum tris (8-hydroxyquinolate) (Al/Alq3), Ni nanocrystals, and Alq3/Al. A high vacuum thermal deposition method was used for the device fabrication. It is critical that the fabrication process condition for Ni nanocrystals be optimized, including ∼100 Å thickness, 0.1 Å/sec-evaporation rate, and in-situ plasma oxidation for effective oxidation. The reasons we chose Ni for the middle metal layer are that Ni has a smaller grain boundary, which is beneficial for scaling down and has a larger work function (∼5.15 eV) that can make a deep quantum well in an energy band diagram, compared with that of Al. Our device showed an electrical nonvolatile memory behavior including Vth of ∼2 V, Vw (write) of ∼3.5 V, negative differential region (NDR) of 3.5∼7 V, Ve (erase) of 8 V, and symmetrical electrical behavior at reverse bias. In addition, an interesting behavior of electrical properties was that, although retention and endurance characteristics were similar to the Al device, the Ion/Ioff ratio was greater than 104 at Vr (read) of 1 V. This value of the Ni device was higher than 102 compared to that of the Al device. Also, small molecular organic nonvolatile memory with a Ni middle layer with α-NPD at same fabrication condition showed more unstable characteristics than Alq3. We can speculate that there is a relationship in fabrication condition between the middle metal material and the organic material. Finally, we conclude that our device with a Ni nanocrystals middle layer is more reliable and useful for small molecular organic nonvolatile memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.