Abstract

Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 μm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind−1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 μm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m−3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.