Abstract

To determine whether small intestine intramucosal PCO(2) and mucosal blood flow changes would be different between ischemic and hypoxic hypoxia. Randomized animal experiment. Research laboratory. Anesthetized, mechanically ventilated, and surgically instrumented pigs. Systemic oxygen delivery was lowered in a stepwise manner to decrease it beyond critical oxygen delivery by lowering either FIO(2) or blood volume. In hypoxic hypoxia pigs (n = 6), arterial oxygen concentration and oxygen delivery decreases were achieved by progressively reducing arterial PO(2) while cardiac index remained unchanged. In ischemic hypoxia pigs (n = 5), oxygen delivery reduction was achieved by progressively reducing cardiac index while arterial PO(2) remained unchanged. In control pigs, oxygen delivery remained unchanged. The lowest oxygen delivery measured in both hypoxia and ischemia experiments was 3.60 +/- 0.26 vs. 2.93 +/- 0.77 mL x kg(-1) x min(-1), respectively (p =.23). At the lowest oxygen delivery level, differences between ischemic hypoxia and hypoxic hypoxia experiments were observed for arterial lactate concentration (468 +/- 308 vs. 1070 +/- 218 mmol/L, respectively; p =.03), mixed venous arterial PCO(2) difference (10 +/- 7 vs. 4 +/- 2 torr, respectively; p =.04), and small intestine mucosal blood flow (6.2 +/- 2.1 vs. 15.7 +/- 7.4 perfusion units, respectively; p =.02). Small intestine intramucosal-arterial difference was higher in ischemic hypoxia than in hypoxic hypoxia (52 +/- 15 vs. 31 +/- 12 torr, respectively; p =.03). Small intestine intramucosal PCO(2) increases may indicate systemic oxygen uptake supply limitation in ischemic and hypoxic hypoxia related to conditions of mucosal flow stagnation and CO(2) generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call