Abstract

To describe a small incision technique for the removal of a nylon foil orbital wall implant. The authors retrospectively reviewed the charts of 9 patients who underwent a minimally invasive anterior orbitotomy for nylon foil explantation. Indications for removal and surgical technique, including size of orbitotomy incision and extent of orbital dissection, were recorded. Motility, globe position, strabismus pre- and post procedure, and complications were also assessed. Photographs, videos, and postoperative imaging were included, when available. The indications for removal were adjacent sinusitis (4 cases), undesirable implant position (3), orbital abscess (1), and adjacent orbital emphysema (1). The removal technique was associated with no changes in motility, globe position, or strabismus postprocedure. The average incision size was 1.1 cm, and the procedure was rapid, usually seconds once the anterior aspect of the implant was exposed and grasped with a hemostat. The dissection in all cases was to the anterior aspect of the implant without a need for deep orbital manipulation. The authors demonstrate through video that the implant folds to exit through a small incision. No adverse events were noted. Nasal endoscopy and radiography demonstrated a fibrous capsule that maintained orbital structure and support. Thin nylon foil implant can be explanted safely and efficiently through a very small incision. The orbit maintains structure and configuration postexplantation in this series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.