Abstract
Gas to liquids (GTL) technology has been applied and proven at large industrial scale in various parts of the world. Such projects, however, consume large quantities of gas, are capital intensive, generate large product volumes, and take decades to bring to fruition. For remote areas of Australia where there are small stranded gas fields and where there is local demand for liquid transportation fuels—which must be transported from manufacturing or import terminal centres—the development of the microchannel GTL reactor is an enabling technology that presents an innovative solution to allow economic development of small GTL projects near the gas deposit, and in the process satisfies local product demand. A microchannel reactor designed to enhance heat transfer in the GTL reactor has been developed and patented by Velocys When used with more active catalysts it provides process intensification to overcome the usual economies of scale benefits associated with larger reactors. The first commercial application of this technology is, at present, being commissioned at ENVIA’s East Oak Oklahoma site using a mixed feedstock of landfill gas and natural gas. Products made by this process do not contain aromatics or sulphur and burn cleaner than petroleum-derived fuels, resulting in lower emissions of NOx, SOx and particulates. Assessment of the use of this novel microchannel reactor technology in remote central Australia is being undertaken. Using a modular skid approach for equipment design and construction to improve site efficiencies, the small GTL concept should be very attractive for a remote Australian context. The standardised modular plants are easier to transport and quicker to install, with lower risk even in the most remote or challenging locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.