Abstract
BackgroundAssisted reproductive technology accounts for an increasing proportion of infertility treatments, and assessments to predict clinical pregnancy outcomes are desired. Extracellular vesicles exist in follicular fluid, and small non coding RNAs in extracellular vesicles underline the possibility of reflecting pregnancy potential.MethodsFollicular fluid samples are collected from 20 ovarian follicles of 15 infertile patients undergoing assisted reproductive technology. Extracellular vesicles are isolated by serial centrifugation and small RNA sequencing is performed to investigate the profiles of microRNAs and P-element-induced wimpy testis-interacting RNAs.ResultsSmall extracellular vesicles with a size range of approximately 100 nm are successfully isolated, and the small non coding RNA profiles of pregnant samples (n = 8) are different from those of non-pregnant samples (n = 12). Fourteen dysregulated small non coding RNAs are selected to identify the independent candidates [mean read count >100, area under the curve >0.8]. Among them, we find that a specific combination of small non coding RNAs (miR-16-2-3p, miR-378a-3p, and miR-483-5p) can predict the pregnant samples more precisely using a receiver operating characteristics curves analysis (area under the curve: 0.96). Furthermore, even in the same patients, the three microRNAs are differentially expressed between pregnant and non-pregnant samples.ConclusionsOur results demonstrate that small non coding RNAs derived from small extracellular vesicles in follicular fluid can be potential non-invasive biomarkers for predicting pregnancy, leading to their probable application in assisted reproductive technology. Further large-scale studies are required to validate the clinical usefulness of these small non coding RNAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.