Abstract
Cell communication within the ovarian follicle is crucial during folliculogenesis to assure an ideal environment for the oocyte to achieve full developmental competence. Intercellular communication is facilitated by the presence of follicular fluid, which mediates the transfer of signaling molecules. Recently, extracellular vesicles (exosomes and microvesicles) containing mRNAs, miRNAs and proteins were described in mammalian follicular fluid. Besides these molecules, extracellular vesicles (EVs) can mediate the transfer of lipids that can act as signal transducers activating second messengers and modulating intracellular pathways. Our goal was to determine the lipid profile of exosomes (small extracellular vesicles) and microvesicles (large extracellular vesicles) from bovine ovarian follicles containing oocytes with different developmental capabilities to verify potential relationships to competence. Using mass spectrometry, we examined the lipid content of EVs present in the follicular fluid of follicles enclosing oocytes that were either unable to cleave (NCLEAVE), arrested at cleavage stage (CLEAVE), or developed to the blastocyst stage (BLAST) after parthenogenetic activation. Although most of the 514 lipids identified in the follicular fluid EVs were common among all groups, 10 exosome-derived lipids and 15 microvesicle-derived lipids were present exclusively in the BLAST group, suggesting a potential relationship with developmental competence. Therefore, our data indicate that the EVs present in follicular fluid of antral follicles of similar morphology contain lipids that may be used as biomarkers associated with the developmental capability of the oocyte to develop to the blastocyst stage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have