Abstract
A general perturbation theory of the Kolmogorov-Arnold-Moser type is described concerning the existence of infinite dimensional invariant tori in nearly integrable hamiltonian systems. The key idea is to consider hamiltonians with aspatial structure and to express all quantitative aspects of the theory in terms of rather general weight functions on such structures. This approach combines great flexibility with an effective control of the vrious interactions in infinite dimensional systems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have