Abstract

Lowering the optical bandgap of conjugated polymers while maintaining a high efficiency for photoinduced charge transfer to suitable electron acceptors such as fullerene has remained a formidable challenge in the area of organic photovoltaics. Here we present the synthesis and application of a series of ultra-small-bandgap donor-acceptor polymers composed of diketopyrrolopyrrole as acceptor and pyrrole-based groups as strong donors. The HOMO energy levels of the polymers can be progressively increased by increasing the donor strength while the LUMO level remains similar, resulting in optical bandgaps between 1.34 and 1.13 eV. Solar cells based on these polymers blended with fullerene derivatives show a high photoresponse in the near-infrared (NIR) and good photovoltaic characteristics, with power conversion efficiencies of 2.9-5.3%. The photoresponse reaches up to 50% external quantum efficiency at 1000 nm and extends to 1200 nm. With the use of a retro-reflective foil to optimize light absorption, high photocurrents up to 23.0 mA cm(-2) are achieved under standard solar illumination conditions. These ultra-small-bandgap polymers are excellent candidates for use in multi-junction applications and NIR organic photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.