Abstract

ABSTRACTProviding reliable estimates of subpopulation/area parameters has attracted increased attention due to their importance in applications such as policymaking. Due to low or even no samples from some areas, we must adopt indirect model approaches. Existing indirect small area estimation methods often assume that a single nested error regression model is suitable for all the small areas. In particular, the effects of the auxiliary variables are either fixed or have a single attraction center. In some applications, it can be more appropriate to cluster the small areas so that the effects of the auxiliary variables are fixed but have multiple centers in the nested error regression model. In this paper, we examine an extended nested error regression model in which the auxiliary variables have mixed effects with multiple centers. We use a penalty approach to identify these centers and estimate the model parameters simultaneously. We then propose two new small area mean estimators and construct estimators of their mean square errors. Simulations based on artificial and realistic finite populations show that the new estimators can be efficient. Furthermore, the confidence intervals based on the new methods have accurate coverage probabilities. We illustrate the proposed methods with the Survey of Labour and Income Dynamics conducted in Canada.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.