Abstract

The analysis of surface oscillations of liquid drops allows measurements of the surface tension and viscosity of the liquid. For small oscillations of spherical drops with a free surface, classical formulae by Rayleigh and Lamb relate these quantities to the frequency and damping of the oscillations. In many cases, however, the drop's surface is covered by a surface film, typically an oxide layer or a surfactant, exhibiting a rheological behaviour different from the bulk fluid. It is the purpose of this paper to investigate how such surface properties influence the oscillation spectrum of a spherical drop. For small bulk shear viscosity, the cases of small, finite and large surface viscosities are discussed, and the onset of aperiodic motion as a function of the surface parameters is also derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call