Abstract
In this paper, we present a modified smoothed particle hydrodynamics (SPH) method. SPH is a Lagrangian meshfree particle method, and it is attractive in dealing with free surfaces, moving interfaces, and deformable boundaries. The improved SPH method modifies the kernel gradient in the traditional SPH method with a new kernel function and a modified SPH discrete form. Use of improved smoothed particle hydrodynamics is made to carry out numerical analysis on micro liquid drop oscillation process. The study focuses on the relation between the micro liquid drop oscillation damping and the oscillating period and amplitude in different aspect ratio and Re number. It is shown that for the micro liquid drop oscillation process with aspect ratio λ≤ 4, under the circumstance of constancy of other parameters, the larger the Re number, the more intense the change of liquid drop's shapes, the weaker the damping effect, and the longer the period of liquid drop's oscillation. Under the circumstance of constancy of Re number, as the initial aspect ratio of liquid drop increases, the amplitude of liquid drop oscillation is stronger, and the period of liquid drop's oscillation is longer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.