Abstract

Metal oxide nanoparticles are commonly used in personal-care formulations as protective agents against exposure to ultraviolet radiation. Although previous research has concluded that nanoparticles do not penetrate healthy skin, it remains contentious whether this conclusion holds under normal conditions of sunscreen use. Humans (n = 20) were exposed to sunscreens containing zinc oxide (ZnO) particles to determine if Zn from the particles was absorbed through skin over five consecutive days under outdoor conditions. Two sunscreens were tested-"nano sunscreen" containing 19-nm nanoparticles and "bulk sunscreen" containing > 100-nm particles. Venous blood and urine samples were collected 8 days before exposure, twice daily during the trial, and 6 days post-exposure. As the first application in nanotechnology studies, stable isotope tracing was used where the ZnO, enriched to > 99% with the stable isotope (68)Zn, allowed dermally absorbed zinc to be distinguished from naturally occurring zinc. The overwhelming majority of applied (68)Zn was not absorbed, although blood and urine samples from all subjects exhibited small increases in levels of tracer (68)Zn. The amount of tracer detected in blood after the 5-day application period was ∼1/1000 th that of total Zn in the blood compartment. Tracer levels in blood continued to increase beyond the 5-day application phase in contrast to those in urine. Levels of (68)Zn in blood and urine from females receiving the nano sunscreen appeared to be higher than males receiving the same treatment and higher than all subjects receiving the bulk sunscreen. It is not known whether (68)Zn has been absorbed as ZnO particles or soluble Zn or both.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call