Abstract
Polyunsaturated fatty acids (PUFAs) undergo autoxidation and generate reactive carbonyl compounds that are toxic to cells and associated with apoptotic cell death, age-related neurodegenerative diseases, and atherosclerosis. PUFA autoxidation is initiated by the abstraction of bis-allylic hydrogen atoms. Replacement of the bis-allylic hydrogen atoms with deuterium atoms (termed site-specific isotope-reinforcement) arrests PUFA autoxidation due to the isotope effect. Kinetic competition experiments show that the kinetic isotope effect for the propagation rate constant of Lin autoxidation compared to that of 11,11-D2-Lin is 12.8±0.6. We investigate the effects of different isotope-reinforced PUFAs and natural PUFAs on the viability of coenzyme Q-deficient Saccharomyces cerevisiae coq mutants and wild-type yeast subjected to copper stress. Cells treated with a C11-BODIPY fluorescent probe to monitor lipid oxidation products show that lipid peroxidation precedes the loss of viability due to H-PUFA toxicity. We show that replacement of just one bis-allylic hydrogen atom with deuterium is sufficient to arrest lipid autoxidation. In contrast, PUFAs reinforced with two deuterium atoms at mono-allylic sites remain susceptible to autoxidation. Surprisingly, yeast treated with a mixture of approximately 20%:80% isotope-reinforced D-PUFA:natural H-PUFA are protected from lipid autoxidation-mediated cell killing. The findings reported here show that inclusion of only a small fraction of PUFAs deuterated at the bis-allylic sites is sufficient to profoundly inhibit the chain reaction of nondeuterated PUFAs in yeast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.