Abstract

Abstract Background The Sm-Nd isotope system has long been used to provide information on the age and geochemical evolution of terrestrial rocks and extraterrestrial objects. Traditional thermal ionization mass spectrometry requires a refined chemical separation of Sm and Nd. Here, we present multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) Sm-Nd isotopic results for a series of mixed standard solutions with different Sm/Nd ratios to test the validity of isobaric interference corrections of Nd isotopic composition and external calibration of Sm/Nd inter-elemental ratio. Findings Reliable 143Nd/144Nd and 145Nd/144Nd ratios of the mixed solutions were obtained by using the exponential law and selected Sm isotopic compositions. The Sm/Nd ratios of the mixed solutions corrected by the standard bracketing method were consistent with the gravimetric values mostly within 1% difference. Conclusions This study provides a simple and high-throughput technique that can simultaneously measure Nd isotopic composition and Sm/Nd ratio without chemical separation between Sm and Nd.

Highlights

  • Sm and Nd are rare earth elements presenting in only small amounts in most rock-forming minerals

  • It was reported that the 143Nd/144Nd ratio of geological samples could be measured accurately by MC-ICP-MS without Sm and Nd separation (Yang et al 2010)

  • This study further evaluates the validity of Nd isotopic and Sm/Nd elemental ratio measurements for a series of Sm + Nd mixed standard solutions by MC-ICP-MS technique, and revisited various sets of reported Sm isotopic composition

Read more

Summary

Conclusions

We evaluated the capability of a Neptune MC-ICP-MS to obtain accurate Nd isotopic composition and Sm/Nd elemental ratio using a series of Sm + Nd mixed standard solutions with different Sm/Nd ratios. The Sm/Nd ratios of the Sm-doped Nd standard solutions could be reliably calibrated by the standard bracketing method mostly within 1% difference from the gravimetric values. These results indicate that accurate Nd isotopic composition and Sm/Nd ratio can be simultaneously measured by a simple and high-throughput technique without chemical separation of Sm and Nd. Competing interests The authors declare that they have no competing interests.

Introduction
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.