Abstract

Morocco is known by the pipeline from Khouribga to Jorf Lasfar that is considered as one of the most world’s largest for the slurry transportation. This phosphate slurry undergoes different manufacturing process. During this process, the rheological properties of the slurry have been taken into account, and next adapted for our study. There are numerous approaches in the literature which investigate different Eulerian-Lagrangian, Eulerian-Eulerian and Stochastic models to simulte the slurry flow [1], [2]-[3]. Actually, it is very difficult to consider all variables for establishing a general model, we build an Eulerian and a homogeneous one in easier framework. Among these variables, there is the stress tensor which is involved in the model. Since it is considered null, then the non-Newtonian fluid is approched by multiple friction factors. In the present work, a onedimensional three-fluid model is developed in Python. The physical model features a mass and momentum balance for each fluid. It allows to predict the pressure drop and flow patterns. The hydraulic transport of slurry system in horizontal tubes has been investigated. To simulate it dynamically, continuity and momentum equations used in applied engineering problem, are solved together. These equations are conveniently solved using the method of characteristics (MOC). The reason for utilizing this method is the robustness and efficiency compared to the finite volume method (FVM). The originality for this work takes into account the physical discontinuity at interface separating slurry and water which mix with each other. The numerical results from the numerical code model head and pressure losses. We test numerically the fitting of the model with the real physical problem. Then the model is used on simplified examples in order to show its capability to be used to predict the flow behaviour in different regimes, showing consequently its consistency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.