Abstract

The number of slug units that traverses a particular point at a given time within a defined pipe cross-section is known as slug frequency. The behaviour of this critical parameter for two-phase flow in high viscosity oils is significantly different from those of conventional oils (of less than 1Pas). In this experimental investigation, new data on slugging frequency in high viscosity oil-gas flow are reported. Scaled experiments were carried out using a mixture of air and mineral oil in a 17m long horizontal pipe of 0.0762m ID. A high-speed Gamma Densitometer of frequency of 250Hz was used for data acquisition over a time interval of 30s. For the range of flow conditions investigated, increase in oil viscosity was observed to strongly influence the slug frequency. Comparison of the present data with prediction models available in the literature revealed discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for horizontal flow. The proposed correlation will improve the prediction of slug frequency in high viscosity oils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.