Abstract
Slug frequency is an important input parameter in most mechanistic and semi-mechanistic models used for estimating slug flow characteristics such as pressure gradient, slug length and slug holdup. It is also essential in the design and sizing of transport and/or production pipelines, process flow control, design and operation of process equipment, etc. This study experimentally investigates slug frequency in two horizontal pipelines with internal diameters (ID) of 0.0254 and 0.0764 m. Test liquids used in the study were mineral oil (with viscosity ranging from 1.0 to 4.0 Poise) and water while compressed air is the gas phase. Effects of liquid viscosity, gas superficial velocity, liquid superficial velocity, pipe internal diameter, pipe length and pressure gradient are discussed. Results indicate that slug frequency increased with increase in oil viscosity; decreased with increase in pipe diameter; and reduces along the length of the pipe. For gas Reynolds number, ReSG≤2500, slug frequency increased with increase in gas superficial velocity, when ReSG>2500, slug frequency decreased with increase in gas superficial velocity. A new slug frequency correlation that accounts for liquid viscosity and gas superficial velocity, hitherto not included in other correlations was proposed. A comparative analysis of the proposed models and existing slug frequency correlation on a high viscosity databank showed that the proposed correlation gave the best prediction with an average absolute percentage error (AAPE) of 19.91%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.