Abstract
Automatic ship license plate recognition (SLPR) for ship identification is of great significance to waterway shipping management. But few attention has been paid to SLPR in the past. In this paper, a novel cascaded Chinese SLPR framework consisting of the quadrangle-based ship license plate detection (QSLPD) algorithm and the rectification-based text recognition network (RTRNet) is developed. Concretely, in QSLPD algorithm, detection is performed based on the pyramid feature fusion architecture ameliorated by the proposed variable receptive field feature enhancement strategy and three task-specific output heads. In addition, a new loss function combining the dice coefficient and cross entropy is explored in the proposed SLPR which can generate significant improvement over the baseline. In RTRNet, regions of interest (RoIs) extraction and irregular text line rectification based on the vertices information predicted by QSLPD are performed before text recognition. Data augmentation are also applied to cope with the problem of limited text recognizer training data and the extremely imbalance distribution of corpus. Extensive experiments are carried out to demonstrate the reliability of the proposed cascaded SLPR framework, that can achieve the highest F-measure of 87.78% and 76.59% with IoU and TIoU metric on the collected dataset, surpasses many existing advanced methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.