Abstract
The rapid development of the license plate recognition technology has made great progress for its widespread uses in intelligent transportation system (ITS). This paper has proposed a novel license plate detection and character recognition algorithm based on a combined feature extraction model and BPNN (Backpropagation Neural Network) which is adaptable in weak illumination and complicated backgrounds. Firstly, a preprocessing is first used to strengthen the contrast ratio of original car image. Secondly, the candidate regions of license plate are checked to verify the true plate, and the license plate image is located accurately by the integral projection method. Finally, a new feature extraction model is designed using three sets of features combination, training the feature vectors through BPNN to complete accurate recognition of the license plate characters. The experimental results with different license plate demonstrate effectiveness and efficiency of the proposed algorithm under various complex backgrounds. Compared with three traditional methods, the recognition accuracy of proposed algorithm has increased to 97.7% and the consuming time has decreased to 46.1ms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.