Abstract
As an important core in the intelligent traffic management system, the technology and application of license plate recognition have become research focus. Detecting the accurate location of a license plate from a vehicle image is considered to be the most crucial step of license plate recognition, which greatly affects the recognition rate and speed of the whole system. Nevertheless, due to the low accuracy of license plate detection in natural scenes, further investigations are still needed in this field in order to make the detection process very efficient. In this paper, We have studied and implemented a convolutional neural network license plate detection algorithm based on transfer learning. According to the invention, new energy license plates and ordinary license plates are adopted as the research objects. The text detection model AdvancedEAST is trained on the license plate images through the transfer learning method, and experiments are carried out on the self-built license plate dataset. The experimental results show that the algorithm can better adapt to light complexity, low resolution, target interference, license plate tilt and other complex conditions. The license plate positioning algorithm has high accuracy in natural scenes, and it is superior to the traditional license plate detection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational Methods in Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.