Abstract

BackgroundOribatida and Collembola are an important part of the soil food web and increase soil fertility by contributing to the recycling of nutrients out of dead organic matter. Active locomotion enables only limited dispersal in these tiny, wingless arthropods, while passive dispersal plays an important role for long-distance dispersal. Previous investigations have focused on passive transport by wind, other animals, or sea currents, whereas studies on transport via running water are missing. However, previous observation of the long survival of submerged terrestrial microarthropods makes passive dispersal with running water very likely.MethodsBy combining field and lab experiments, we studied the potential for passive dispersal of oribatid mites with running water. We investigated terrestrial Oribatida and Collembola: (1) along a stream taking soil and moss samples, (2) in a stream using sticky covers and aquarium nets, and (3) studied their ability to colonise new soil after aquatic transport with the help of floating islands. Furthermore, we investigated the survival of submerged Oribatida species and their floating capabilities in lab experiments to predict dispersal distances with running water. We tested for differences between species using Kruskal-Wallis test for equal medians and Mann-Whitney pairwise-comparison and χ2-test for the influence of body size on aquatic dispersal.ResultsSoil and moss samples revealed a pool of 52 oribatid mite species at the stream bank. Within the stream, we caught 180 individuals from 36 oribatid mite species. Only 14 of those species were also found in the soil and moss samples, whereas the remaining 22 were of unknown origin. Based on material caught on sticky covers, an average of 63.9 (± 54.6) oribatid mite individuals fell on one m2 stream water per week. Four species of Collembola (27 individuals) and 21 species of oribatid mites (47 individuals) were collected with aquarium nets. Eight microarthropod species (Oribatida + Collembola) successfully colonised new soil in the floating islands after aquatic dispersal. Lab experiments showed that Oribatida can float for at least 14 hours at the surface of running water and may survive for more than 365 days when submerged. The floating abilities and survival rates were largely species-specific.ConclusionThis is the first study to demonstrate successful passive dispersal with running water for two groups of terrestrial soil microarthropods, including subsequent colonisation of new soil. We show that submersion survival, as well as floating abilities, and therefore dispersal capability, are not only high in oribatid mites, but also species-specific. Running waters obviously serve as long-distance dispersal highways for many of these less mobile soil-living animals.

Highlights

  • Oribatida and Collembola are an important part of the soil food web and increase soil fertility by contributing to the recycling of nutrients out of dead organic matter

  • Twenty-two oribatid mite species that were detected in the stream were not found in the soil or moss samples

  • The present study demonstrated for the first time aquatic dispersal of soil microarthropods in running water, including subsequent colonisation of new soil

Read more

Summary

Introduction

Oribatida and Collembola are an important part of the soil food web and increase soil fertility by contributing to the recycling of nutrients out of dead organic matter. Active locomotion enables only limited dispersal in these tiny, wingless arthropods, while passive dispersal plays an important role for long-distance dispersal. Previous investigations have focused on passive transport by wind, other animals, or sea currents, whereas studies on transport via running water are missing. Previous observation of the long survival of submerged terrestrial microarthropods makes passive dispersal with running water very likely. Understanding species ranges and predicting the future distribution of invasive species requires detailed knowledge about dispersal mechanisms [5, 6]. For studies on dispersal in larger animals, such as birds and mammals, GPStracking or mark-and-recapture can be applied. Studying the dispersal capacity of small arthropods living hidden in the soil is much more difficult, but not less important [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call