Abstract
This paper is devoted to investigating the dynamics of charged stellar structures with Bardeen exterior geometry. For this purpose, firstly a proposed metric coefficient is utilized, which is defined as a=N1+2hr2m/2. Here, h and N are arbitrary constants determined from matching conditions and m is a positive integer. The pressure and density profiles are found to be positive and monotonically decreasing, with maximum values occurring at the center. Furthermore, the energy conditions and causality conditions are satisfied, and the adiabatic index falls within an acceptable range. The second part of the paper focuses on the dynamics of rotating stars. Numerical values for relevant parameters are assumed to obtain the masses and radii of stars within the desired range. Five different compact stars, namely, VelaX−1, CenX−3, 4U1820−30, 4U1608−52, and PSR1903+327, are considered. The behavior of the moment of inertia of the sphere against the solar mass is investigated, revealing an increase in the moment of inertia with an increase in solar mass. Furthermore, the relationships of mass and energy density against the radius of the compact structure exhibit natural behavior, supporting the acceptability of the analysis. Overall, the study supports the existence of realistic charged compact structures with Bardeen exterior geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.