Abstract

We study theoretically and experimentally the influence of pancake vortices on motion of the Josephson vortex lattice in layered high-temperature superconductors. Mobility of the Josephson vortices in layered superconductors is strongly suppressed by a small amount of pancake-vortex stacks. Moving Josephson vortex lattice forces oscillating zigzag deformation of the pancake-vortex stacks contributing to damping. The salient feature of this contribution is its nonmonotonic dependence on the lattice velocity and the corresponding voltage. Maximum pancake effect is realized when the Josephson frequency matches the relaxation frequency of the stacks. The pancake-vortex damping is strongly suppressed by thermal fluctuations of the pancake vortices. This theoretical picture was qualitatively confirmed by experiments on two mesas prepared out of ${\mathrm{Bi}}_{2}{\mathrm{Sr}}_{2}\mathrm{Ca}{\mathrm{Cu}}_{2}{\mathrm{O}}_{8+\ensuremath{\delta}}$ whiskers. We found that the Josephson-vortex flux-flow voltage is very sensitive to small $c$-axis magnetic field. The pancake-vortex contribution to the current indeed nonmonotonically depends on voltage and decreases with increasing temperature and in-plane magnetic field. We also found that irradiation with heavy ions has no noticeable direct influence on motion of the Josephson vortices but dramatically reduces the pancake-vortex contribution to the damping of the Josephson vortex lattice at low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.