Abstract

This work presents the proposed schemes for decelerating cold molecules created in pulsed supersonic expansions using pulsed optical lattices. The first scheme relies on the application of a decelerating optical lattice with a dipole-potential well depth of approximately 1 K, created by rapidly chirping medium-intensity fields in the 10 W/cm/sup 2/ range. This scheme is an optical analog of the Start decelerator that has been successfully used to slow a range of polar molecules. A significant fraction (about 10%) of the very heavy I/sub 2 /molecules in an Ar buffer gas is shown to be slowed by using this method over sub-microsecond time scales. In the second technique, an optical lattice with larger well depth in the 100 K range travelling at half the supersonic beam velocity is used to trap a significant fraction of the cold, high-velocity molecules. This technique is developed based on the property of periodic motion of the trapped molecules in the optical lattice; the molecules reverse their initial (relative) velocities in the lattice reference frame after half a period. Using this method the cold molecules can be transferred from high speed to zero velocity on nanosecond time scales. As an example, 33% of a CO molecule beam (1 K) with a velocity of 230 m/s is slowed utilising optical intensities of less than 10/sup 12/ W/cm/sup 2/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.