Abstract

We investigate the deceleration and bunching of cold molecules in a pulsed supersonic jet using a far-off-resonant optical lattice traveling with a constant velocity. Using an analytical treatment, we show that by choosing the lattice velocity equal to half the supersonic beam velocity and by optimizing the pulse duration, a significant fraction ({approx}33%) of translationally cold (1 K) CO molecules from a supersonic molecular beam can be decelerated to zero velocity, and simultaneously bunched in velocity space. Due to the large difference of polarizability to mass ratio between the buffer gas and the CO molecules in the pulsed jet, the buffer gas can be precluded from the fraction of stationary molecules by choosing a suitable pulse duration. Furthermore, we find that spatial bunching within the optical lattice is induced and the position of the bunch within the lattice can be chosen by varying the lattice velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call