Abstract
To study the transcapillary fluid movements in the human lower limb in the upright body position and during muscle exercise, the slow changes in thigh and calf volumes were measured by mercury-in-rubber-strain gauge plethysmography. Measurements were carried out on 20 healthy volunteers while sitting, standing and doing cycle ergometer exercise at intensities of 50 and 100-W. A plethysmographic recording of slow extravascular volume changes during muscle exercise was possible because movement artefacts were eliminated by low-pass filtering. While standing and sitting the volumes of both thigh and calf increased due to enhanced transcapillary filtration. While standing the mean rate of increase was 0.13%.min-1 in the calf and 0.09%.min-1 in the thigh. During cycle ergometer exercise at 50 and 100 W, the calf volume decreased with a mean rate of -0.09.min-1. In contrast, the thigh volume did not change significantly during exercise at 50 W and increased at 100 W. Most of the increase occurred during the first half of the experimental period i.e. between min 2 and 12, amounting to +0.6%. Thus, simultaneous measurements revealed opposite changes in the thigh and calf. This demonstrates that the conflicting findings reported in the literature may have occurred because opposite changes can occur in different muscle groups of the working limb at the same time. Lowered venous pressure, increased lymph flow and increased tissue pressure in the contracting muscle are considered to have caused the reduction in calf volume during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Applied Physiology and Occupational Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.