Abstract
During motionless standing an increased hydrostatic pressure leads to increased transcapillary fluid filtration into the interstitial space of the tissues of the lower extremities. The resulting changes in calf volume were measured using a mercury-in-silastic strain gauge. Following a change in body posture from lying to standing or sitting a two-stage change in calf volume was observed. A fast initial filling of the capacitance vessels was followed by a slow but continuous increase in calf volume during motionless standing and sitting with the legs dependent passively. The mean rates of this slow increase were about 0.17%.min-1 during standing and 0.12%.min-1 during sitting, respectively. During cycle ergometer exercise the plethysmographic recordings were highly influenced by movement artifacts. These artifacts, however, were removed from the recordings by low-pass filtering. As a result the slow volume changes, i.e. changes of the extravascular fluid were selected from the recorded signal. Contrary to the increases during standing and sitting the calf volumes of all 30 subjects decreased during cycle ergometer exercise. The mean decrease during 18 min of cycling (2-20 min) was -1.6% at 50 W work load and -1.9% at 100 W, respectively. This difference was statistically significant (p less than or equal to 0.01). The factors which may counteract the development of an interstitial edema, even during quiet standing and sitting, are discussed in detail. During cycling, however, three factors are most likely to contribute to the observed reduction in calf volume: (1) The decrease in venous pressure, which in turn reduces the effective filtration pressure.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European journal of applied physiology and occupational physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.