Abstract

The joining of a thin section AZ31HP magnesium alloy was accomplished by laser beam welding in the autogenous mode using a Nd-YAG laser system. Micro hardness evaluation and slow strain rate tensile (SSRT) tests in air revealed that the weld metal had near-matching mechanical properties corresponding to that of the parent alloy. However, in terms of stress corrosion cracking (SCC) resistance as assessed by SSRT tests in ASTM D1384 solution, the weldment was found to have higher susceptibility compared to the parent alloy. The fracture in the weld metal/fusion boundary/HAZ interface suggested that the failure was due to the grain coarsening at the very narrow heat affected zone. The resistance to SCC of the parent alloy and the weldment specimens was found to improve slightly by the application of plasma electrolytic oxidation (PEO) coating from a silicate based electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.