Abstract

We numerically investigate the long-time behavior of the density-density autocorrelation function in driven lattice gases with particle exclusion and periodic boundary conditions in one, two, and three dimensions using precise Monte Carlo simulations. In the one-dimensional asymmetric exclusion process on a ring with half the lattice sites occupied, we find that correlations induce extremely slow relaxation to the asymptotic power law decay. We compare the crossover functions obtained from our simulations with various analytic results in the literature and analyze the characteristic oscillations that occur in finite systems away from half-filling. As expected, in three dimensions correlations are weak and consequently the mean-field description is adequate. We also investigate the relaxation toward the nonequilibrium steady state in the two-time density-density autocorrelations, starting from strongly correlated initial conditions. We obtain simple aging scaling behavior in one, two, and three dimensions, with the expected power laws.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call