Abstract

A beam source of atomic hydrogen is described which produces metastable atoms in the 2S1/2 state by optical pumping. A beam flux of 1016 atoms/s is generated in the ground state. The atoms in the beam pass in front of a lamp producing Lyman-β (1026 Å) radiation, where some of them are excited to the 3P level and cascade with a branching ratio of 12% to the 2S1/2 state. The number of metastable atoms produced is measured by quenching them with an electric field and detecting the emitted Lyman-α (1216 Å) radiation. Beams of 106 metastable atoms/s were obtained. Using the Bethe-Lamb theory for the quenching process, a metastable beam effective temperature of 100 K was measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.