Abstract

By photoionizing hyperfine (HF) levels of the Cs state $6{\phantom{\rule{0.16em}{0ex}}}^{2}{P}_{3/2}$ in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around $180\phantom{\rule{4pt}{0ex}}\ensuremath{\mu}\mathrm{s})$ spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of ``dark'' and ``bright'' resonances leading to power-dependent branching coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call