Abstract

We investigate dynamics of a single mobile impurity immersed in a bath of Anderson localized particles and focus on the regime of relatively strong disorder and interactions. In that regime, the dynamics of the system is particularly slow, suggesting, at short times, an occurrence of many-body localization. Considering longer time scales, we show that the latter is a transient effect and that, eventually, the impurity spreads sub-diffusively and induces a gradual delocalization of the Anderson insulator. The phenomenology of the system in the considered regime of slow dynamics includes a sub-diffusive growth of mean square displacement of the impurity, power-law decay of density correlation functions of the Anderson insulator and a power-law growth of entanglement entropy in the system. We observe a similar regime of slow dynamics also when the disorder in the system is replaced by a sufficiently strong quasi-periodic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.