Abstract

We investigate a model for randomly layered magnets, viz. a three-dimensional Ising model with planar defects. The magnetic phase transition in this system is smeared because static long-range order can develop on isolated rare spatial regions. Here, we report large-scale kinetic Monte Carlo simulations of the dynamical behavior close to the smeared phase transition which we characterize by the spin (time) autocorrelation function. In the paramagnetic phase, its behavior is dominated by Griffiths effects similar to those in magnets with point defects. In the tail region of the smeared transition the dynamics is even slower: the autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small asymptotic value following a power law at late times. Our Monte-Carlo results are in good agreement with recent theoretical predictions based on optimal fluctuation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.