Abstract

Practical Byzantine Fault Tolerance (PBFT) is one of the most popular consensus mechanisms for the consortium and private blockchain technology. It has been recognized as a candidate consensus mechanism for the Internet of Things networks as it offers lower resource requirements and high performance when compared with other consensus mechanisms such as proof of work. In this paper, by considering the blockchain nodes are wirelessly connected, we model the network nodes distribution and transaction arrival rate as Poisson point process and we develop a framework for evaluating the performance of the wireless PBFT network. The framework utilizes slotted ALOHA as its multiple access technique. We derive the end-to-end success probability of the wireless PBFT network which serves as the basis for obtaining other key performance indicators namely, the optimal transmission interval, the transaction throughput and delay, and the viable area. The viable area represents the minimum PBFT coverage area that guarantees the liveness, safety, and resilience of the PBFT protocol while satisfying a predefined end-to-end success probability. Results show that the transmission interval required to make the wireless PBFT network viable can be reduced if either the end-to-end success probability requirement or the number of faulty nodes is lowered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.