Abstract

Slot-die coating is actually the most used coating method for the manufacturing of lithium-ion battery electrodes. An easy way of reducing production costs is to increase the line capacity. Thus, the relatively high-viscous slurries are coated at continuously increasing velocities. Facing these higher and higher velocities, the main processing challenge is to ensure that the surface quality stays constant. Therefore we investigated coating of high-viscous anode slurries consisting of large graphite particles. Systematically detected conditions for which coating defects occurred were discussed and compared with different theoretical limits for stable coating conditions. Thereby the uniformity of the stable wet film was analyzed and logged with a two dimensional laser sensor system.Even though the detected break-up lines are, in some regions, congruent with the applied viscocapillary models, the appearing coating defects are not as expected in the literature. Furthermore, large particles and agglomerations may provoke an additional film break-up at small film thicknesses regardless of the coating speed. For stable conditions the roughness of the film increases when the dimensionless gap width increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.