Abstract

Tall structures, such as towers and bridges, can oscillate at excessive magnitudes when subjected to wind and earthquake loads. Liquid sloshing absorbers can be used to suppress these excessive oscillations by tuning the frequency of the sloshing to the critical frequency of the structure. Sloshing absorbers are simple structures consisting of a partially full container of liquid with a free surface. Tuning ensures that significant amounts of harmful energy can be extracted from the structure to the sloshing liquid. However, there needs to be a rapid means of dissipating this energy to avoid its returning back to the structure (then back to the liquid periodically).A hen׳s egg seems to have evolved to efficiently dissipate energy to protect its embryo using sloshing of its liquid content. Hence, the potential to implement the egg׳s unique properties as a sloshing absorber for structural control, is the main focus of this study. Numerical simulations, using Smoothed Particle Hydrodynamics (SPH), and experimental comparisons are presented in this paper. One objective is to demonstrate the ability of SPH to simulate complex free surface behaviour in three dimensions. Such a tool is then useful to identify different dissipation modes. Effects of fill volume and viscosity on the rate of dissipation, are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.