Abstract

This paper deals with the studies of sloshing of liquid in partially filled rectangular composite containers subjected to external excitation. The governing equation for inviscid fluid is written as pressure variable form. At each time step, the pressure is evaluated using the meshless local Petrov–Galerkin (MLPG) approach. A local symmetric weak form (LSWF) for linearized sloshing is developed, and a truly meshless method, based on LSWF and moving least squares (MLS) approximation, is presented for the solution of Laplace equation with the requisite boundary conditions. The effectiveness of the developed algorithm is demonstrated through few numerical examples. The comparison of results in terms of natural slosh frequencies, sloshing amplitudes and hydrodynamic pressures obtained in the present investigation are made with those available in the reported literature. To observe the change in the total liquid response due fluid–structure interaction effects, parametric studies are carried out for different cases by varying the fibre orientations and wall thicknesses in the laminated container wall. The present meshless method based on LSWF is found to be simple and attractive with a great potential in engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call