Abstract

Abstract This article presents a numerical algorithm using the Meshless Local Petrov-Galerkin (MLPG) method for the incompressible Navier–Stokes equations. To deal with time derivatives, the forward time differences are employed yielding the Poisson’s equation. The MLPG method with the moving least-square (MLS) approximation for trial function is chosen to solve the Poisson’s equation. In numerical examples, the local symmetric weak form (LSWF) and the local unsymmetric weak form (LUSWF) with a classical Gaussian weight and an improved Gaussian weight on both regular and irregular nodes are demonstrated. It is found that LSWF1 with a classical Gaussian weight order 2 gives the most accurate result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.