Abstract
Experiments concerning slightly slanting impact between a flat-ended rigid body and a flat-ended elastic cantilever column with a rectangular cross-section have been performed. The experimental results are compared with the theoretical ones. The small angle of incidence was measured by using an optical method. The impact process was studied by using a split disc for the rigid body, with the two halves bonded together and electrically insulated from each other. The disc and the column were parts of an electric circuit. Different contact states could be distinguished according to different voltage levels. Reasonably good agreement between theory and experiment was found. Thus, the impact duration has its minimum under perfectly axial impact as predicted by the theory. Also, the predicted process of alternating line and surface contact was observed. Furthermore, the existence of a small critical angle of incidence was verified. This critical angle of incidence divides the impact processes into two categories: (1) The rigid body and the column end come into surface contact before separation. (2) They separate without surface contact. Comparison of axial strains between theory and experiment shows good agreement.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have