Abstract

In this paper we consider the issue of sliding motion in Filippov systems on the intersection of two or more surfaces. To this end, we propose an extension of the Filippov sliding vector field on manifolds of co-dimension p, with p ≥ 2. Our model passes through the use of a multivalued sign function reformulation. To justify our proposal, we will restrict to cases where the sliding manifold is attractive. For the case of co-dimension p = 2, we will distinguish between two types of attractive sliding manifold: “node-like” and “spiral-like”. The case of node-like attractive manifold will be further extended to the case of p ≥ 3. Finally, we compare our model to other existing methodologies on some examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.