Abstract

AbstractIn this work we establish weak convergence rates for temporal discretisations of stochastic wave equations with multiplicative noise, in particular, for the hyperbolic Anderson model. For this class of stochastic partial differential equations the weak convergence rates we obtain are indeed twice the known strong rates. To the best of our knowledge, our findings are the first in the scientific literature which provide essentially sharp weak convergence rates for temporal discretisations of stochastic wave equations with multiplicative noise. Key ideas of our proof are a sophisticated splitting of the error and applications of the recently introduced mild Itô formula. We complement our analytical findings by means of numerical simulations in Python for the decay of the weak approximation error for SPDEs for four different test functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.