Abstract

This article investigates sliding mode control for a class of continuous-time switched systems with signal quantization, actuator nonlinearity and persistent dwell-time switching that can guarantee the globally uniformly asymptotical stability of the closed-loop system. First, a sliding surface is devised for the switched system and sufficient conditions are proposed to ensure the globally uniformly asymptotical stability of the sliding motion equation by utilizing multiple Lyapunov function technique. Second, the sliding mode control laws, based on the parameters of quantizer, actuator nonlinearity and disturbance, are devised to stabilize the closed-loop systems. Moreover, sufficient conditions are given to guarantee the devised sliding surface's reachability. Finally, the superiority and effectiveness of developed results is illustrated via a numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.