Abstract

In this paper, based on sliding mode control approach, the robust stabilisation problem for a class of continuous-time Markovian jump linear uncertain systems with partly unknown transition rates is investigated. The transition rate matrix under consideration covers completely known, boundary known and completely unknown elements. By making use of linear matrix inequalities technique, sufficient conditions are presented to derive the linear switching surface and guarantee the stochastic stability of sliding mode dynamics. Then a sliding mode control law is designed to drive the state trajectory of the closed-loop system to the specified linear switching surface in finite time in spite of the existing uncertainties and unknown transition rates. Finally, an example is given to verify the validity of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.