Abstract

This paper is devoted to investigating the problem of robust sliding mode control for a class of uncertain Markovian jump linear time-delay systems with generally uncertain transition rates (GUTRs). In this GUTR model, each transition rate can be completely unknown or only its estimate value is known. By making use of linear matrix inequalities technique, sufficient conditions are presented to derive the linear switching surface and guarantee the stochastic stability of sliding mode dynamics. A sliding mode control law is developed to drive the state trajectory of the closed-loop system to the specified linear switching surface in a finite-time interval in spite of the existing uncertainties, time delays and unknown transition rates. Finally, an example is presented to verify the validity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.